

微塑料分析研究一站式技术服务

关于微谱

微谱,大型研究型检测机构,始于2008年,总部位于上海,是科技服务改变世界的践行者。

微谱聚焦先进制造、生物医药、美丽健康、生态环保、食品农产品五大领域,向社会提供分析测试、检测评价、研发服务、计量校准、认证审 核、知识产权六大服务,全方位的技术解决方案助力客户取得更大成功。

微谱现已在全国30多个城市设立分子公司以及50多个专业实验室,拥有3000余名专业人员。微谱是中国合格评定国家认可委员会 (CNAS)认可的、市场监督管理局资质认定(CMA)的、国家认证认可监督管理委员会批准的大型第三方检测认证机构,也是国家药品监督管理 局批准的化妆品注册和备案检验检测机构,具有海关总署颁发的进出口商品检验鉴定机构资格,也拥有农产品CATL(农产品质量安全检测) 资质,实验动物使用许可证,病原微生物BSL-2实验室,ISO9001质量管理体系认证等。同时微谱也是国家工业和信息化部认定的国家产业技 术基础公共服务平台、国家服务型制造示范平台、国家中小企业公共服务示范平台、国家专精特新小巨人企业。基于十七年的专业技术积累 和遍布全国的服务网络, 微谱每年出具超过27万份技术报告, 累计服务客户48万余家, 其中包括世界五百强客户百余家。

微谱始终秉承"服务,不止于检测!"的理念,尽心尽力让科技进步更快,让产品质量更好,让人类生活更安全、更健康、更绿色!

3000+ 专业团队

办公及实验室面积

1800 +

大型精密仪器

500万+ 谱图数据库

CMA/CNAS 认证认可资质

ISO/GMP 双质量体系运营

280+

发明专利&实用新型专利

关于微塑料

微塑料,指的是直径小于5毫米的塑料碎片和颗粒;是形状多样的非均匀塑料颗粒混合 体。因其体积小、比表面积大,故也是一种造成污染的主要载体。

2004年,英国普利茅斯大学的汤普森等人在《科学》杂志上,首次提出了"微塑料"的概念; 经过近20年的研究,人们已经在自然水体、土壤、动植物、人体等各种环境样本中发现了微塑 料的存在。随着研究的深入,微塑料检测方法也在不断的完善和升级。

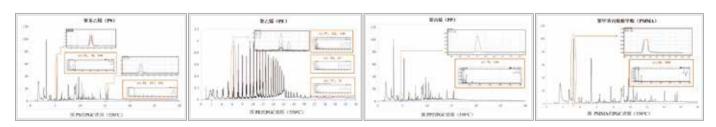
微谱在微塑料检测领域,有丰富的样本检测案例,可为各课题组提供专业的、个性化的技 术方案和检测服务!

以上提及的资质、荣誉等相关数据来源:微谱科技集团旗下分子公司及其关联公司;以上提及的各项业务,由拥有相应业务资质的微谱科技集团旗下分子公司及其关联公司承接;其中专利代理业务由上海微略知识产权代理有限公司全权受理。

Py-Gcms效果示例 - 血液样品

某医学院为了调研微塑料与健康的关系,需要对疾病组和正常组的血液样品中的微塑料进行定性定量分析。

实验方案


样品通过微塑料对应良溶剂的溶剂萃取法提取样品中的微塑料,使用热裂解-气质联用仪(Py-GCMS)技术定性定量11种目标化合物。

项目结论

微塑料测试结果如下表,可知疾病组和正常组中微塑料含量和种类差异明显,建立了微塑料暴露水平与疾病发生的流行病学关联,为评估微塑料健康风险提供基础数据。

样品名称	一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个												
行四位彻	PS	PE	PP	РММА	PVC	PC	PET	PA6	PA66	PLA	PBAT	PU	РОМ
1	0.66	N.D.	***	5.56	***	N.D.	***	N.D.	8.24	N.D.	N.D.	N.D.	N.D.
2	1.12	N.D.	***	N.D.	***	N.D.	***	0.24	2.02	N.D.	N.D.	N.D.	N.D.
3	***	***	2.16	N.D.	4.12	***	N.D.	N.D.	2.04	***	***	***	***
4	0.48	***	***	***	23.16	***	N.D.	N.D.	***	***	***	***	***
5	***	7.55	***	***	***	N.D.	5.54	***	***	N.D.	N.D.	N.D.	N.D.
6	***	***	3.40	N.D.	***	N.D.	N.D.	***	15.86	***	***	***	***
7	1.08	***	***	0.88	26.40	***	N.D.	N.D.	***	N.D.	N.D.	***	N.D.
8	0.64	5.02	***	N.D.	***	N.D.	***	3.62	6.92	N.D.	***	N.D.	***
9	1.40	3.26	N.D.	***	***	N.D.	***	N.D.	13.22	N.D.	***	***	***
10	***	***	N.D.	N.D.	25.78	N.D.	N.D.	N.D.	***	N.D.	N.D.	N.D.	***
检出限(μg)	0.007	0.073	0.007	0.007	0.02	0.007	0.033	0.02	0.02	0.033	0.033	0.007	0.033
定量限(μg)	0.02	0.22	0.02	0.02	0.06	0.02	0.1	0.06	0.06	0.1	0.1	0.02	0.10

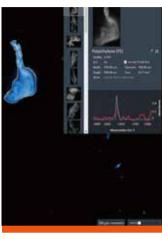
PGC的色谱质谱图

常用测试仪器

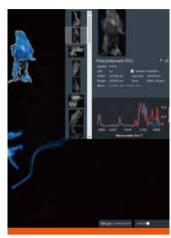
光谱类汇总:精准追踪微塑料,微塑料技术"显微镜",看清微塑料的"真面目"

光谱类检测方法	光学显微镜+显微红外	显微红外	激光红外LDIR	拉曼光谱Raman	扫描电镜SEM
仪器图片					
可检测的尺寸范围	>50µm	>10µm	>10µm	>1µm	>20nm
可呈现的结果	颜色、尺寸、定性、丰度	尺寸、定性、丰度	尺寸、定性、丰度	尺寸、定性、丰度	尺寸
优点	数据完整且——对应	分辨率较高,可达 10微米	统计功能(微塑料颗粒统计、尺寸分布统计、效率高);效率高	分辨率高,可达到 1微米	尺寸可以达到 纳米级别
缺点	效率低;存在误差(受 人工挑拣、谱图鉴别等 主观因素影响)	效率低(扫描时间长)	尺寸20~500µm	对样品要求高 (荧光效应)	需要辅助其他 手段定性(如 LDIR)

质谱类:破解微塑料的"分子密码"


质谱类检测方法	气相色谱质谱联用仪 GCMS	热裂解-气相色谱质谱联用仪 Py-GCMS	液相色谱质谱联用仪 LCMSMS	
仪器图片				
可检测的尺寸范围	无尺寸限制	无尺寸限制	无尺寸限制	
可呈现的结果	定性、定量	定性、定量	定性、定量	
优点	可达ppm、ppb级别	可达ppm、ppb级别;适用于绝大 多数的微塑料测试	检出限低,可达ppb、ppt级别	
缺点	需要较复杂的前处理	数据处理较复杂	需要更复杂的前处理及限定部分塑料(适用于缩聚聚合的微塑料)	

激光红外效果示例 - 沉积物样品



• 载玻片颗粒汇总视图

• PE单颗粒激光红外谱图

• PC单颗粒激光红外谱图

• 定性结果及颗粒数统计

• 粒径分布统计

服务流程

<u>02</u> 样品寄送

> 4 样品分析

f

________ 报告发送 <u>0</u>6 售后服

售后服务

全球微塑料研究前沿技术矩阵

作为环境与健康交叉学科的核心议题,微塑料检测技术的创新正驱动着科学认知的突破。微谱实验室通过多模态分析平台,为全球顶尖研究 机构提供关键技术支持,部分标志性成果发表于:

客户名称	文献名称	合作项目	期刊名字	
复旦大学营养 研究所所公共 卫生学院	Occurrence of microplastics and disturbance of gut microbiota: a pilot study of preschool children in Xiamen, China	Py-GCMS	EBioMedicine ISSN:2352-3964	
北京三院	Detection and characterization of microplastics in the human testis and semen	LDIR+Py-GCMS	Science of the Total Environment ISSN:1879-1026	
陕西师范大学 地理与旅游学院	Suspected sources of microplastics and nanoplastics: Contamination from experimental reagents and solvents	Py-GCMS	Water Research ISSN: 0043-1354	
首都医科大学北 京安贞医院冠 心病中心	Microplastics in three types of human arteries detected by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS)	Py-GCMS	Journal of Hazardous Materials ISSN: 0304-3894	
哈尔滨医科大学	Microplastics and nanoplastics increase major adverse cardiac events in patients with myocardial infarction	Py-GCMS	Journal of Hazardous Materials ISSN:0304-3894	
汕头大学医学院 第一附属医院 神经内科	Multimodal detection and analysis of microplastics in human thrombi from multiple anatomically distinct sites	SEM+LDIR+Py-GCMS	EBioMedicine ISSN: 2352-3964	
重庆大学三峡医院 儿科综合内科	Micro(nano)plastics in human urine: A surprising contrast between Chongqing's urban and rural regions	LDIR+Py-GCMS	Science of The Total Environment ISSN: 0048-9697	
南方医科大学 珠江医院转化 医学研究中心	Revealing new insights: Two-center evidence of microplastics in human vitreous humor and their implications for ocular health	SEM+LDIR+Py-GCMS	Science of The Total Environment ISSN: 0048-9697	

客户名称	文献名称	合作项目	期刊名字	
中国环境科学院	Is the petrochemical industry an overlooked critical source of environmental microplastics?	LDIR	Journal of Hazardous Materials ISSN:0304-3894	
福建农林大学	Enhanced degradation of microplastics during sludge composting via microbially-driven Fenton reaction	LDIR	Journal of Hazardous Materials ISSN:0304-3894	
西北农林科技大学	Microplastic pollution in organic farming development cannot be ignored in China: Perspective of commercial organic fertilizer	LDIR	Journal of Hazardous Materials ISSN:0304-3894	
河北工程大学	Hydrostatic pressure drives microbe-mediated biodegradation of microplastics in surface sediments of deep reservoirs: Novel findings from hydrostatic pressure simulation experiments	LDIR	Water Research ISSN:0043-1354	
汕头大学医学院	Detection and Analysis of Microplastics in Human Sputum	LDIR	Environmental Science & Technology ISSN:0013-936X	
西北农林科技大学	Synergistic effects of biochar derived from different sources on greenhouse gas emissions and microplastics mitigation during sewage sludge composting	LDIR	Bioresource Technology ISSN:1873-2976	
复旦大学	The Association Between Microplastics and Microbiota in Placentas and Meconium: The First Evidence in Humans	LDIR	Environmental Science & Technology ISSN:0013-936X	
同济大学	Biodegradation of polystyrene and low-density polyethylene by Zophobas atratus larvae: Fragmentation into microplastics, gut microbiota shift, and microbial functional enzymes	LDIR	Journal of Cleaner Production	
•••		•••		

微谱先进制造事业群

上海 广州 东莞 深圳 苏州 太仓 盐城 南京 杭州 宁波 北京 天津 青岛 济南 淄博 石家庄成都 重庆 宁夏 合肥 亳州 武汉 西安 贵州 长沙 江西 福建 广西 云南 河南 郑州 内蒙古

400-700-8005 www.weipugroup.com